If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-6x-527=0
a = 2; b = -6; c = -527;
Δ = b2-4ac
Δ = -62-4·2·(-527)
Δ = 4252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4252}=\sqrt{4*1063}=\sqrt{4}*\sqrt{1063}=2\sqrt{1063}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{1063}}{2*2}=\frac{6-2\sqrt{1063}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{1063}}{2*2}=\frac{6+2\sqrt{1063}}{4} $
| 5b-8=68 | | 5b-8=67 | | -3(-2m-2)=6-5m | | a(4a+1)=0 | | -3(2m-2)=6-5m | | 50-4b=50 | | 8(r-1)=r-23+4r | | 27x=8.25-6.0x | | a/3=-16 | | 2(x-3)+4(2x+1)=8-5(x-4) | | 7.8x+1.3=1.8x+3.7 | | 0.3x+0.3(10)=0.1(x+20) | | x+14+5x-74=360 | | 6(x+8)-2=2x+4(x-7) | | 23•n=1426 | | 20=4(15-x)+9x | | 64-9p(-3)p=-3 | | 1.6.8–4.2b=5.6b–3 | | -3/x-11=-8 | | 6+0.75c=9 | | 142+x+10=180 | | 17=8x+3x=62 | | -5+x/2=13 | | 5-+34=-2(1-7n) | | -2.38+17.4g-7.41=6.77+19.2g | | 3y-822=2 | | 2w+108w=38 | | 116+x+26=180 | | 18q-17=19q | | 116+x+26=186 | | 3y-822=2,0,5 | | n=12*8-12 |